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Abstract
Following Gibbs’ approach, a general electrostatic model of heterogeneous
systems with non-homogeneous interfaces is proposed. The intrinsic surface
polarization is taken into account through the introduction of a surface
dielectric constant and the electrostatic boundary conditions are generalized
as two-dimensional Poisson equations. This model is applied to analyse the
electrostatic potential of a charged step defect on a semiconductor surface. The
step line charge density, the surface charge density, and the surface dielectric
permittivity are determined from the experimental data for the InP (110) surface.

1. Introduction

Many years ago Gibbs [1] proposed a model of heterogeneous systems. In this model, the
nanoscopic transition zones between the bulk phases are replaced by fictitious surfaces. The
real continuous behaviour of some bulk quantity is replaced by an idealized quantity which
has a step-like behaviour across the phase boundary. The difference between the real and the
idealized quantity is ascribed to the surface as a surface (excess) quantity. Originally, Gibbs [1]
introduced the concept of excess quantities to restore the real amounts of matter, energy, charge,
etc in the idealized system.

In [2, 3] the electrostatics of heterogeneous media have been studied. The intrinsic
polarizability of the interface has been accounted for by introducing a surface dielectric
constant. In this approach, the traditional boundary condition for the jump of the electric
displacement field across the boundary has been generalized into a surface analogue of the
bulk Maxwell equation for the surface electric displacement field. In [2] the nucleation of
Langmuir monolayers at the air–water interface has been considered. The theory successfully
described the suppression of the nucleation process with an increase in the water electrolyte
concentration as a polarization effect analogous to the Thomson theory for three-dimensional
(3D) phase transition [4].

In a previous paper [3], we calculated the electrostatic potential of a point charge on the
interface between two bulk phases. The result has been compared with the experimental data
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for the potential of charged defects on a semiconductor surface [5] and a good theoretical fit
of the experimental data has been obtained. The fitting value of the surface dielectric constant
has been found to be in good agreement with its theoretical estimation in the framework of the
Gibbs approach.

In this paper we apply this approach to compute the electrostatic potential of a charged line
on the boundary between two bulk phases. This problem is used as a model for a charged step
on the InP(110) surface [6].

The paper is organized as follows. In section 2 we derive the complete system of equations
describing the electrostatics of complex heterogeneous media with a new substantial element,
namely the introduction of a surface dielectric constant, and we compute the electrostatic
potential of a charged line on a phase boundary. In section 3 the field of a charged step on
a semiconductor surface is obtained. The results of this calculation are used to interpret the
experimental data [6].

2. Electrostatic potential of a charged line on a phase boundary

In [3], we considered an approach to the macroscopic electrostatics of a heterogeneous system
consisting of two bulk phases divided by a phase boundary. It starts with the definition of the
charge density and the electric displacement field [3, 7]:

ρ(z) = ρ+(z)θ(z)+ ρ−(z)θ(−z)+ ρsδ(z) (1)

D = D+θ(z)+ D−θ(−z)+ Dsδ(z). (2)

Here, we assume that the phase boundary surface is a plane situated at z = 0. Also, θ(z) is
the Heaviside step-function and δ(z) is the Dirac function. The charge density and the electric
displacement field in the bulk phases (situated at z > 0 and z < 0) are denoted by ρ± and D±,
respectively. Following Gibbs [1], the surface charge density ρs is defined as an excess quantity

ρs =
∫ ∞

−∞
[ρreal(z)− ρ+(z)θ(z)− ρ−(z)θ(−z)] dz (3)

where ρreal(z) is the real charge distribution in the heterogeneous system. Generally, ρreal(z) is
not known and the real continuous behaviour of the charge density is replaced by an idealized
quantity which has a step-like behaviour across the phase boundary. The surface charge density
is introduced in such a way that it restores the real amount of charge in the system which
is not completely accounted for by the idealized charge distribution. The surface electric
displacement field Ds is defined analogously to ρs. Finally, using D = ε0εE , where E is
the electric field and ε0 is the permittivity of vacuum, we define the dielectric constant ε in the
system as

ε(z) = ε+θ(z)+ ε−θ(−z)+ εsδ(z). (4)

Here, εs is the surface dielectric constant and ε± are the dielectric constants for the two bulk
phases.

Assuming that the Maxwell equations are valid for the above-defined fields, the equations
for the electrostatic potential and the corresponding boundary conditions are obtained in the
form

ε−�ϕ− = −ρ−
ε0
, (5)

ε+�ϕ+ = −ρ+
ε0
, (6)
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Figure 1. Schematic of the system under consideration in the text.
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+ εs�sϕs = −ρs

ε0
, (7)

ϕ−|z=0 = ϕ+|z=0 = ϕs. (8)

Here, the indexes ‘s’, ‘+’ and ‘−’ are used to denote the electrostatic potential at z = 0, z > 0,
and z < 0, respectively. Equation (7), the classical boundary condition for the jump of the
normal component of the electrostatic displacement field at the surface, is generalized as a
Poisson equation on the surface, as it is modified by the term εs�sϕ, which takes into account
the surface polarization. The laplacian�s is taken only with respect to the surface coordinates.

Let us point out that the form of the equations strongly depends on the geometry of the
various phase boundaries in the system under consideration. Therefore, one has to derive the
particular set of boundary conditions for every given problem.

One can estimate the value of εs to be

εs =
∫ ∞

−∞
[εreal(z)− εideal(z)] dz ∼ εbulkδ, (9)

where εbulk = (ε+ + ε−)/2 is the average bulk dielectric constant and δ is the width of the
transition zone, which is of the order of the average interparticle distance.

Now we apply this theory to the problem of computing the electrostatic potential of a
uniformly charged line on the interface between two bulk phases (figure 1). Let us take the y
axis to coincide with the charged line. We denote the electrostatic potentials and the surface
dielectric constants for x > 0 (x < 0) by ϕs+(ϕs−) and εs+(εs−), respectively. The surface
charge density is given by

ρs(x) = ρs+(x)θ(x)+ ρs−(x)θ(−x)+ ρlδ(x) (10)

where ρl = constant is the line charge density introduced as an excess of the surface charge
density. The equation (7) becomes

ε+
∂ϕ+
∂z

∣∣∣∣
z=0

− ε−
∂ϕ−
∂z

∣∣∣∣
z=0

+ εs±
d2ϕ±
dx2

= −ρs±
ε0
. (11)

The boundary condition for the jump of the normal to the line component of the surface
dielectric field is given by

εs+
dϕs+
dx

∣∣∣∣
x=0

− εs−
dϕs−
dx

∣∣∣∣
x=0

= −ρl

ε0
. (12)

Finally, there is the boundary condition

ϕs−|x=0 = ϕs+|x=0 . (13)
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3. Charged line on the semiconductor surface

We apply the theory formulated in equations (5), (6), (8) and (11)–(13) to compute the potential
of a charged step on III–V compound semiconductor surfaces [6]. The authors of [6] have
observed, by scanning-tunnelling microscopy, the appearance of a vacancy-denuded zone
around steps on InP(110). They attributed this behaviour to the charge repulsion between the
charged step and the charged P vacancies. The step potential has been roughly estimated by
summing the potentials of aligned point charges. The potential of the point charge on the
semiconductor surface has been approximated by a screened Coulomb potential [5, 6]. The
distribution of the charged vacancies around the step has been calculated from the expression

c(x) = c∞ exp

(
−eϕs(x)

kT

)
(14)

where c∞ is the vacancy concentration on step-free surfaces, e is the elementary charge, k is the
Boltzmann constant, and T is the temperature. The authors of [6] have fitted the experimentally
inferred width of the vacancy-denuded zone and the charge of the step has been estimated to be
in the range +1e to − + 3e per lattice spacing.

The main assumptions in our approach are as follows: (i) the approach is applicable
to distances that exceed the atomic scale, i.e. only the macroscopic parameters of the
semiconductor are needed; (ii) the charged step is modelled by a uniformly charged line on
the semiconductor surface; (iii) the defects are treated as point charges with charge +e [5];
(iv) an unspecified local relationship between the chemical potential and the surface charge
density is assumed; (v) both bulk and surface charges are taken into account in the calculation
of the screening of the additional charge.

In the semiconductor (z < 0), the equilibrium density of free carriers with effective mass
m is given by the well-known expression [8, 9]

c(μ) = 2N	1/2(μ
∗) (15)

where N is the effective density of states

N = 2

(
2πmkT

(2π h̄)2

)1/2

. (16)

	1/2(μ) is the Fermi–Dirac integral

	1/2(μ
∗) = 2

π

∫ ∞

0

√
u

1 + exp(u − μ∗)
du (17)

with μ∗ = μ/kT . The charge density ρ− is

ρ− = e[c(μ+ ϕ−)− c(μ)]. (18)

We assume that the linear approximation holds and develop the expression for ρ− in powers of
ϕ−, retaining only the linear term

ρ− = −ε0ε−κ2
−ϕ− (19)

where the inverse bulk screening length κ− is defined by the expression

κ2
− = e2 N

ε0ε−kT
	′

1/2(μ
∗). (20)

In the bulk of the semiconductor, the free carriers are holes with concentration p. The holes
form a non-degenerate gas and, according to [8, 9],

κ2
− = e2 p

ε0ε−kT
. (21)
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The surface carrier concentration � is introduced as a Gibbs excess, analogously to
equation (1). Consequently, the surface charge density is defined as

ρs = e[�(ϕs + ϕs,∞)− �(ϕs,∞)] (22)

where ϕs,∞ is the so-called surface potential [8]. In linear approximation, we obtain

ρs = −ε0εsκ
2
s ϕs (23)

and κ−1
s is the surface screening length. The expression for κs is given by

κ2
s = e2αcP

ε0εskT
(24)

where cP is the surface concentration of the phosphorus vacancies and α is a factor between 0
and 1 which measures the number of free surface carriers per phosphorus vacancy.

Next, we solve the system equations (5), (6), (8) and (11)–(13) with the corresponding
expressions for the charge densities obtained above. The solution for the potentials of the bulk
phases and of the charged line on the semiconductor surface (z0 = 0) is cast into the form

ϕ+(x, z) =
∫ ∞

0
ψ̂se

−ξ z cos(ξx) dξ, (25)

ϕ−(x, z) =
∫ ∞

0
ψ̂se

√
ξ 2+κ2−z cos(ξx) dξ, (26)

ϕs(x) = 2
∫ ∞

0
ψ̂s cos(ξx) dξ , (27)

where

ψ̂s = ρl

2πε0

1

ξ + ε−
√
ξ 2 + κ2− + εs

(
ξ 2 + κ2

s

) . (28)

The numerical computations were performed with the following set of parameters. The
bulk hole concentration is 1.3–2.1 × 1018 m−3 [5, 10]. The surface density of the phosphorus
vacancies is cP = 1.87×1016 m−2 [6]. For the bulk screening length R− = 1/κ− (at 297 K and
with ε− = 12.5) we used the value 3.2 nm. The surface dielectric constant εs, the parameter α,
and the line charge density ρl were used as fitting parameters.

The results of our calculation are shown on figure 2. The points are obtained using
equation (14) from the experimental results for the vacancy concentration c(x) taken from
figure 3 in [6]. The best fit gives the values εs = 7 nm, α = 0.33, and ρl = +0.172e per lattice
spacing; the standard deviation is 0.009 952. In fact, the fitting procedure results in a rather
shallow minimum—the standard deviation is less than 0.01 for εs = 5–12 nm, α = 0.3–0.4,
and ρl = +0.15 to +0.25e per lattice spacing. If we use the estimation (9) for the εs, the value
obtained for the width of the transition zone δ is of the order of one to two lattice constants
(for InP—0.6 nm) which is a reasonable result. We must point out that the authors of [6] have
estimated ρl to be in the region of +1e to +3e per lattice spacing, that is, our approach predicts
a drastically lower line charge density of the charged step.

An important feature of our approach is the behaviour of the surface potential as x tends to
0. From equations (27) and (28) one sees that as x → 0 the surface potential goes to a constant
and is not diverging. The surface screening charge is not felt very close to the charged line
and the potential tends to the two-dimensional potential of a charged line, which is a constant.
One should compare this result with the well-known behaviour of the potential of a uniformly
charged plane in three dimensions, which is also a constant. In our previous work [3] we
have shown that the surface electrostatic potential of a point charge on the interface between
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Figure 2. Surface potential ϕs of a charged step on the surface computed for εs = 7 nm, α = 0.33,
and ρl = +0.172e per lattice spacing. The points are obtained using equation (14) from the
experimental results for the vacancy concentration c(x) taken from figure 3 in [6].

(This figure is in colour only in the electronic version)

two bulk phases diverges as ln r and not as 1/r as r → 0 (r is the distance to the point
charge on the surface). This behaviour is not surprising—ϕs is obtained as a solution of a two-
dimensional Poisson equation and it is well known that the two-dimensional Coulomb potential
is logarithmic.

In conclusion, we have applied the theory for the electrostatics of heterogeneous systems
with non-homogeneous phase boundaries based on the Gibbs approach to compute the potential
of a charged line on the phase boundary. The surface dielectric constant is introduced in order
to take into account the intrinsic surface polarizability of the phase boundary. The potential
of a charged step on a semiconductor surface is computed within this framework. The surface
dielectric constant is determined by fitting to the existing experimental results for the potential
of charged steps on a semiconductor surface. Its value is found to be of the expected order of
magnitude. The theory predicts a much smaller line charge density than the one obtained in the
traditional approach to the electrostatics of the system.
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